血流に反応する血管内皮細胞

三俣 昌子

要 旨:血管内皮細胞は終生血流に曝されているが,この血流が内皮細胞の形態や機能をコント ロールしていることは近年ようやく研究者に広く受け入れられた感がある。この血流により調節 される内皮機能の変化が粥状硬化,動脈瘤,血管炎などの血管病変の発生を左右する。血流によ る血管病変発生の機序を解明することにより薬剤や遺伝子を使った予防,治療の開発への道も開 くと思われる。血流が内皮細胞におよぼす力学的作用は主に3つある。一つがずり応力で,これ は血管樹の局所の構築状態や狭窄・拡張などの病的な構造変化により,その平均値・方向を変え, これらの時間的・空間的変化の程度を変える。第二がストレッチと内皮の伸展による変形で,こ の力は拍動や血管壁自身の弾力性を持つ性格により生じる。第三が内皮細胞の圧縮で,これは血 圧により生じる。この総説は上記の力学的作用の中のずり応力とストレッチを取り上げ,これら による内皮の機能変化に伴う形態変化,遺伝子・蛋白発現などを紹介する。(J. Jpn. Coll. Angiol., 2003; 43: 733-743)

Key words: Endothelial cells, Shear stress, Stretch

はじめに

血管の構造は他の臓器に比べ単純で構成細胞が少な く,内皮細胞(内皮),平滑筋細胞(平滑筋)または周皮 細胞,繊維芽細胞の四つしかない。動脈硬化,高血 圧,炎症や癌細胞浸潤による刺激など各種の異なる刺 激に対する反応も単純で,内膜肥厚か,壁が繊維で置 換されるか,瘤形成が主である。炎症反応が加わると リンパ球,好中球,好酸球,単球や多核巨細胞が壁に 出現するが,炎症を鎮めて血管を見ると治癒は内膜肥 厚か繊維化か瘤形成という形で終わる。病院で行う病 理診断業務においても癌診断ほどドラマチックではな いし診断を要求されるチャンスも少ない。したがって 血管壁の形態だけ見ていると退屈する。他の臓器と異 なり血管病理診断の講習会もほとんどない。しかし, 血管から壁細胞を取り出して培養系に移すと突然細胞 は活発に活動し始め,刺激に対して形態を変え,多種 類の機能を発揮し始め,静かに見えた細胞群がさまざ まな機能を密かに隠し持っていることが初めて解る。 沢山の刺激に直ちに反応し,その伝達経路は多岐にわ

日本大学医学部病理学講座

たり,さまざまな蛋白を産生することを実感する。しかし,培養系で発現されるどの機能や形態の破綻が疾患の発生や進展に本当に結びついているのかと病理医は考えて病変に侵されたヒトの血管壁を再び見直すと,培養細胞の活動と血管壁の変化のギャップは大きく,その間はなかなか埋まらない。このギャップを埋めるために将来役立つと思われる情報の幾つかを内皮に焦点をあてて以下に羅列してみる。

1.活性型内皮と非活性型内皮

他の臓器細胞に比べ内皮の細胞内小器官は比較的乏 しい。ミトコンドリア,小胞体,リボゾーム,Golgi装 置などの細胞内小器官は少ない。これは安定した状態 では内皮の活動性が低いことを示唆する。また,血管 壁では例外部位(分岐部)を除いて増殖内皮を見ること は少ない。しかし,細胞を栄養に富む培養系に移すと 内皮は活発に分裂し,形も紡錘形ではなく多角形にな り,細胞の厚さも増し,細胞内小器官も多数確認でき るようになり,代謝活動も活発になる。このように内 皮は機能変化に合わせて形態も変化させるが,活動性

2003年8月25日受理

が高くなった内皮を活性型内皮,安定化して活動性が 低い内皮を非活性型内皮と区別して呼ぶと病態が理解 しやすい。例えば,粥状硬化が生じ難い非分岐部の内 皮の形態を粥状硬化が好発する血管分岐部と比較する と,前者は紡錘形で,血流の方向に細胞質の長軸をあ わせて配列し、細胞表面のglycocalyxはより厚く、細胞 内にはアクチンフィラメントが基底膜側の細胞膜近く に束状に血流方向に並び,これと細胞基質接着班 focal substrate contact を介して結合する細胞外の基底膜はよ り厚い。細胞内小器官は乏しい。一方,後者はより多 角形で,膨隆しており,血管内腔面側に多数の絨毛状 の突起を出し,glycocalyxは薄く,細胞質内により多く の粗面小胞体, ミトコンドリア, Golgi装置, ライソ ゾームを認め,アクチンフィラメントはより少なく, 基底膜もより薄い1,2)。前者が非活性型,後者が活性型 の内皮の形態と考えられる。

内皮を炎症性サイトカインで刺激しても複数の接着 因子を発現すると同時に形態を大きく変える。細菌や ウイルスの感染,サイトトキシン,脂質過酸化物,低 酸素なども内皮を活性化する。活性型に変化させた刺 激が消失すると安定した非活性型に可逆的に戻る。加 齢により,増殖因子刺激などに対する細胞内情報が的 確に伝達され難くなり,内皮の反応は鈍くなる³⁾。

活性型内皮は多彩な機能を発揮する。大きく分けて 1. 血管壁透過の調節, 2. 血液量と血圧の調節, 3. 細 胞増殖作用,4.血液凝固·溶解作用,5.炎症反応調 節,6.細胞外マトリックス産生,7.脂質代謝作用が 挙げられる。複数の機能が一つの刺激で変化し,また 複数の刺激が共通した機能変化をもたらす。内皮の透 過性は小胞輸送 vesicular transport),内皮間を通過する 輸送(junctional transport), 拡散により細胞を通過する 経路がある。これらは大きさの異なる粒子,フェリチ ン,ホースラデイッシュ・ペルオキシダーゼ,ミオグ ロビン, ミクロペルオキシダーゼ, 蛍光でラベルした アルブミンなどのtracerを使って形態的に観察できる。 前述の多角形の活性型内皮は紡錘形の非活性型内皮に 比ベホースラデイッシュ・ペルオキシダーゼを入れた 小胞を多数認め,透過性が亢進していることを示す4)。 また接着因子(ICAM-1, VCAM-1, MCP-1, E-selectin) の発現も活性化の指標となる。

2. ずり応力と内皮

1)特定の血流パターンが粥状硬化発症の

イニシエイターになる

ヒトの粥状硬化の初期病変は5歳前後から大,中型 動脈の特定部位に見られ,内膜への血漿浸潤,脂質浸 潤,単球/泡沫細胞とリンパ球浸潤を見る⁵⁾。血液成分 の透過のバリヤー役を果たすのは内皮なので,これら の浸潤は内皮の機能異常があって初めて生じると考え られる。一方,ヒトの動脈硬化が血管の分岐部に好発 することは1950年代後半に既に指摘されていた。1960 年代に行われた14カ国から集めた10~69歳の23,207例 のヒトの冠状動脈の調査⁶⁾と101例の大動脈の調査^{7)で} は動脈硬化の発生機序として局所の血流パターンの変 化が挙げられている。すなわち,内皮はヒトの生涯を 通じて血流に晒されているが,分岐部と非分岐部の内 皮には異なった血流が作用するので,その血流パター ンの違いが分岐部の内皮の機能障害を誘導して,動脈 硬化の発生に大きく影響することが指摘された。

粥状硬化の初期病変が発生する部位には法則性があ る。血管分岐部の外側壁,分岐入口部の血流の中枢側 の壁,血管湾曲部位では内腔へ凸面を形成する壁面に 初発する。動脈壁の三次元構造を維持したまま固定 し,壁を透明化した後,動脈腔内に微粒子を入れた液 体を流して微粒子の軌跡を追い流線図を描くと血管の 各部位における流れのパターンが観察できる。粥状硬 化好発部位では流れが遅くなったり,血流が壁から剥 離したり,渦や逆流が生じている。他方,大多数の部 位では血流は整然と流れ,壁に小さい凹凸などがあっ て流れが多少乱れてもこの乱れは直ぐに減衰して規則 的な安定した流れが保たれる。このような部位では逆 に粥状硬化は起こり難い。

血管壁に対し血流は大きく分けて二つの力学的作用 を及ぼす。一つは血圧による力で,これは内皮面に垂 直な力が加わる。他方は血流により内皮表面の接線方 向に,かつ流れの方向に加わる力でこれをずり応力 (shear stress)と呼ぶ(Fig.1)。前者は内皮の細胞全体を 周辺へ引っ張る張力として作用し,このstretchによっ ても内皮機能は変化する。血管壁に作用するstretchに 対しては内皮のみならず平滑筋も大きく反応するが, ずり応力に対しては平滑筋も反応しないわけではない が,内皮が主として対応すると考えられている。 粥状硬化好発部位では流れが乱れているために力の ベクトルが他方向へ向かい,このために内皮には平均 的に低いずり応力が作用する。また,ずり応力の方向 や程度が経時的に強く変化したり,隣り合う細胞間で 異なるずり応力が作用したり,変化に富む。逆に粥状 硬化が生じ難い部位ではより高いずり応力が一方向性 に安定して作用すると考えられている。

先に述べた如く, in vivoの血管内皮の形態が粥状硬 化好発部位と非好発部位で異なるが, これは血流が作 リ出すずり応力の違いを内皮が感受してその形を変 え,同時に形の異なるこの両者は機能も異なり,その 結果,脂質沈着や白血球浸潤などの粥状硬化初期変化 がスタートしやすい内皮面と,し難い内皮面が出来上 がっていることを示唆する。

2)ずり応力による培養内皮の形態変化,

遺伝子・蛋白発現

実験的に内皮表面に培養液を流してずり応力刺激を 加えると,刺激後30分から細胞周辺にリング状に束を なして配列するactin filamentsが減少し始め,代わりに 細胞を横切るstress fibersが増加してくる(Fig. 2)。6時

Figure 1 Main two mechanical forces produced by blood flow acting on a endothelium, which tightly adhere together and to the basement membrane.

間後には細胞は扁平化し,24時間後には多くの内皮が 紡錘形となり,流れの方向に長軸を一致させて配列す る⁸⁾。すなわち,流れ刺激が加わると内皮は細胞と細 胞,細胞と細胞外基質との接着を忙しく変化させて流 れストレスに最も適応する形,配列へと自己を変え る。一方ずり応力刺激がない場合や乱流域に置かれた 内皮はより不整多角形で流れ方向に配列しない。この in vitroの形態はin vivoの観察と一致する。このように

Figure 2 Stress fiber formation by shear stress in cultured endothelial cells. Upper panel: F-action stained with rhodamin phalloidin. Left, static control. Right, Sheared ECs, 6 hour exposure. Lower panel: Time course of stress fiber formation by shear stress.

November; 25, 2003

内皮は形態を変えながら同時に多数の遺伝子や蛋白を 発現させる。Table 1に現在までに報告された定常性で かつ層流性のずり応力(粥状硬化発生に抵抗を示す内皮 に作用しているずり応力)により発現誘導される蛋白や mRNAを示す。大部分のmRNAはずり応力刺激後30分 から8時間以内に発現が開始され,発現が一過性のも のもある。しかし,その遺伝子から作られる蛋白は長 く発現が確認されるものが多い。これら遺伝子や蛋白 の主な機能を表に示したが,広い範囲にわたる機能の 異なる蛋白が同時にずり応力により内皮に発現される ことが解る。

ずり応力はシグナル伝達因子も多数発現させる9~11) (Table 2)。ずり応力刺激は内皮の核内まで伝達され, 遺伝子結合蛋白を発現させ、活性化させ、遺伝子に転 写因子を結合させて種々の内皮機能を調節しているこ とが解る。われわれの実験結果を例に示すと,定常流 性ずり応力はp21を発現させ、その結果cdk2、cdk4の活 性が抑制され, pRbの燐酸化が抑えられて内皮を細胞 周期のGOに停止させて細胞の増殖を止める¹²(Fig.3)。 一方同じずり応力はアポトーシスを抑制する遺伝子と 蛋白(IAP)を発現させて内皮のアポトーシスも抑制す る¹³(Fig.4)。内皮の増殖や死は血管透過性を増強させ 粥状硬化を誘導すると考えられる。すなわち,分岐部 以外の大多数の内皮は定常性ずり応力に晒されている が、この機械的刺激が内皮を安定化させ、粥状硬化発 生に抵抗性を示すような微小環境を形成させると考え られる。乱流が起こり,前記の安定な機械的刺激から 逸脱すると内皮は不安定化し,例えば増殖し,細胞膜 にconnexin 43などの接着蛋白が輸送されず,このため に粥状硬化が発生しやすい環境となると多くの研究者 は今では考えている14)。この仮説を支持する近年報告 された実験結果を例に挙げると,基底膜の主要構成成 分であるIV型コラーゲンを分解するMMP-9の遺伝子発 現と分泌は流れのパターンにより異なり,一方向性 (unidirectional shear stress)のずり応力はMMP-9の遺伝子 発現と分泌を促進しないが,両方向性 Oscillatory shear stress)は促進する15)。すなわち,基底膜の維持やその結 果生じるであろう血管壁透過性の調節も流れに影響を 受ける内皮機能の違いに左右される。

3. 伸展(stretch)と内皮

血流が作り出して内皮に作用する二つの機械的刺

激,すなわちずり応力と伸展(ストレッチ)は刺激の種 類は大きく異なるにもかかわらず内皮には類似した変 化を誘導する。両者共に内皮にstress fibersを形成さ せ,形態を変化させ,アポトーシスを抑制する。例え ば,前述の如く,内皮にずり応力を負荷すると負荷後 約30分にはストレス繊維 アクチンフィラメント が増 加するが(Fig.2),伸展刺激でも負荷後約10分後にはス トレス繊維が形成される¹⁶⁾。但し,ストレス繊維の形 成方向は刺激方向とは異なり,ずり応力では流れの方 向に平行に,伸展刺激では細胞が伸展される方向とは 直角に再構築される。しかし,いずれの刺激でもスト レス繊維は細胞の長軸方向に繊維の長軸を合わせる。 すなわち,流れを内皮表面に流してずり応力を内皮に 負荷しても,シリコン膜などの基盤上に内皮を接着さ せて,そのシリコン膜を伸展して内皮に伸展刺激を加 えても,いずれの場合も細胞はこの刺激を感受して, 最初にストレス繊維の脱重合,重合を繰り返して繊維 の配列を変え,同時に接着班の位置も変え,これより 遅れて細胞形態を変えて,ずり応力の場合は細胞の長 軸を流れの方向に平行に合わせ,伸展の場合は伸展軸 に対し細胞の長軸を垂直に配列しなおして外力に適応 する。内皮のアポトーシスに対してもこの2種の機械 的刺激は抑制的に作用し^{13,17)},この抑制の情報伝達系 においても共通した酵素が活躍する[phosphatidyl inositol 3-kinase(PI3 kinase)活性化,AktとBad燐酸化]^{17,18})。 しかし、このアポトーシス抑制経路におけるNitric oxideの関与に関しては報告が異なり,ずり応力刺激経路 では関与するが19)伸展刺激経路では関与しないと言わ れる17)。平滑筋細胞などの増殖や遊走を促進する PDGF-Bの発現も両刺激で内皮に誘導される^{20,21})。しか し,ずり応力刺激がPDGF-B遺伝子発現へと伝達される ために必要なPDGF-Bプロモーター上の遺伝子配列, SSRE(shear stress responsive element)は伸展刺激には関 与せず,異なる配列が必要と言われる²¹⁾。更に,機械 的シグナルの伝達の早期に細胞内カルシュウム^{22,23)}と カリュウム24,25)の増加が関与することも両刺激に共通 している。他方,ずり応力と伸展刺激は細胞外物質の 産生と分解に関しては相反する現象を起し, collagen合 成は前者が促進²⁶⁾,後者が抑制²⁷⁾,これを分解する MMP-2分泌は前者が抑制²⁸⁾,後者は促進する²⁹⁾。 Table 3にストレッチにより内皮に発現される蛋白や遺 伝子を示す。

二伊	트그	•
大	ЫJ	

蛋白/mRNA	発現時間	効果	
ICAM-1 mRNA	1 ~ 8 h	接着因子	
ICAM-1蛋白	1 ~ 48h	接着因子	
MCP-1 mRNA	1.5~ 4 h以内	接着因子	
GRO mRNA	1 ~ 8 h	接着因子	
GRO 蛋白	4 h	接着因子	
t-PA mRNA	5 ~ 24h	凝固・線溶系因子	
t-PA蛋白	10 ~ 24h	凝固・線溶系因子	
TF活性化	4 ~ 8 h	凝固・線溶系因子	
TF mRNA発現	1 ~ 2 h	凝固・線溶系因子	
thrombomodulin蛋白	36h	凝固・線溶系因子	
PDGF A mRNA	1 ~ 4 h	増殖因子	
PDGF B mRNA	3 ~24h	増殖因子	
bFGF mRNA	30m ~ 9h	増殖因子	
TGF β mRNA	2 ~ 12h	増殖因子	
Active TGF β蛋白	24h	増殖因子	
HB-EGF mRNA	30m ~ 5 h	増殖因子	
NO	30m ~ 24h	単球接着抑制,MCP-1 p-selectin,	
		VCAM-1遺伝子発現	
cNOS mRNA	3 ~24h	NO合成酵素	
cNOS蛋白	3 ~ 24h	NO合成酵素	
CNP mRNA	3 ~ 12h	血管作動活性物質	
cyclooxygenase 2 mRNA	30m ~ 24h	血管作動活性物質	
PGI2合成	2 m ~ 5 m , 24h	血管作動活性物質	
L-PGDS mRNA	6 h	血管作動活性物質	
PGD2蛋白	18h	血管作動活性物質	
PGJ₂蛋白	18h	核内転写因子	
Reactive oxygen species	15m ~ 6 h	活性酸素	
manganese SOD mRNA	1 ~ 6 h	抗酸化物	
Cu/Zn SOD mRNA	2 ~ 28h	抗酸化物	
Cu/Zn SOD蛋白	24 ~ 48h	抗酸化物	
IL-1蛋白	48h	サイトカイン	
IL-6蛋白	24 ~ 48h	サイトカイン	
collagen, type IV合成	15m ~ 72h	基底膜コラーゲン	
collagen mRNA 発現	1 ~ 12h	細胞外繊維	
MMP-2 mRNA発現	1 h ~	メタロプロテナゼ	
GAGs合成	24h	細胞外基質	
7H6蛋白4	8 ~72h	細胞接着因子	
ZO-1 mRNA	30m ~ 12h	細胞接着因子	
ZO-1 蛋白	48h	細胞接着因子	
a-catenin蛋白	72h	細胞接着因子	
connexin 45 gap接合mRNA	5 h	細胞接着因子	
connexin 45 蛋白	5 h崩壊30h再形成	細胞接着因子	
b-actin mRNA	1 ~ 6 h	細胞骨格	
LDL受容体 mRNA発現	1 ~ 4 h	脂質代謝	
HPGT mRNA		PGトランスポーター	
GM-CSFs mRNA・蛋白発現	2 ~24h	増殖因子	

 ${\bf Table \ 1} \quad {\rm Gene \ and \ protein \ expression \ in \ endothelial \ cells \ by \ shear \ stress}$

血流に反応する血管内皮細胞

Table 2 Shear stress signals					
伝達因子	発現時間	効果			
Ca2+上昇	sec ~ 1m	PDGF-B mRNA発現			
		PGI₂產生			
K+channels活性	10sec	cNOS mRNA発現			
		TGF-β1発現			
細胞内pH低下	2 ~ 30m				
IP₃合成	15sec ~ 6 m	細胞のalignmentに関与			
PLC		c-fos mRNA発現			
DAG		PGI2產生			
MAP kinase燐酸化	2 ~ 10m				
p21ras活性化	1 ~ 5 m	TRE誘導,MCP-1発現			
ERKの燐酸化	5 m ~ 30m				
ERK kinase活性增加	10m ~ 30m				
JNK活性化(c-jun燐酸化)	5 ~ 30m				
PI3-kinase活性化	1 h	アボトシス抑制			
Akt燐酸化	30m ~ 3 h	アホトーシス抑制			
G蛋日 a. mit initia		PDGF-B mRNA発現			
Gi a3蛋日增加	72h	eNOS活性化,NO放出PGI2放出			
CPLA2活性	30 ~ 60m				
PKC	30m	C-TOS MRNA完現			
		HB-EGF MRNA完現			
	10m				
	TOTT				
FKC無関与		PDGF-BIIIRINA光境			
		endothelin-1 mRNA発現抑制			
		cNOS mRNA登租			
		cNOS 蛋白発現			
cAMP無関与		PDGF-B mRNA発現			
c-fos mRNA	30 m ~ 1 h	転写因子			
c-iun mRNA	30 m ~ 4 h	転写因子			
HSP27燐酸化	30m ~ 20h	tPA mRNA発現			
MAP kinase活性	2 ~ 30m				
BMK1(ERK5)活性化	10 ~ 60m	転写因子燐酸化			
SREBP1転写因子蛋白活性化	1 ~ 2 h	脂質代謝転写因子			
-2.5 ? -2.9kb promoter	18h	endothelin-1mRNA発現抑制			
NFκB結合	1 ~ 2 h	PDGF-B promoter			
AP-1結合	1 ~ 2 h				
ACE promoter活性抑制	2 ~ 8 h	ACE mRNA発現			
SSRE	4 h	PDGF-B mRNA発現			
TRE	8 h	MCP-1 mRNA 発現			
Sp1	8 h	TF mRNA誘導			
Sp1燐酸化	30m~ 1 h				
Egr-1蛋白発現	15m ~ 7 h				
Egr-1/promoter結合	4 h	TF mRNA発現			
Smad6 mRNA	24h	TGFβ情報伝達因子			
Smad7 mRNA	24h	抑制型情報伝達因子			
PAF receptor transcript-2発現		PAF受容体增加			

Figure 3 Mechanisms of growth inhibition of cultuired endothelial cells by laminar unidirectional shear stress. DNA synthesis of cultured human umbilical vein (HUVECs) and bovine aortic (BAECs) endothelial cells were suppressed by shear stress (Upper left panel). This suppression was caused by a induction of p21 expression by shear stress in cells (upper right panel), which suppress the cdk 2 and cdk 4 activities (lower panel) and the subsequent pRb phosphorylation in the G1 to S transition.

4.機械的刺激の感受機構

ずり応力やストレッチなどの機械的刺激を感受する 受容体としてメカノレセプターの存在が想定されてい るが,その実像は解っていない。しかし,仮説は提唱 され,これを支持する実験結果が報告されつつある。 多くの仮説は機械的刺激による細胞外から細胞内への イオン流入と,細胞骨格とこれに連結する細胞同士ま たは細胞と細胞外基質を結合する接着装置の構造蛋白 の変化をメカノセンサーとして重要視している。以下 にその仮説を紹介すると,機械的刺激により,1.内皮 表面の血中物質の濃度が変化して,これが細胞内Ca²⁺ などの上昇を招いてシグナルとなる。2.細胞膜が伸展 し,これにより非特異的陽イオンチャンネルが活性化 し,Ca²⁺などの陽イオンが細胞内に流入して内皮の膜 は脱分極しこれがシグナルとなる。3.Stretch-sensitive cation channelも想定され,この活性化により細胞内 Ca²⁺が上昇してチロシン燐酸化酵素であるSrcが活性化

Figure 4 Inhibition of endothelial cell apoptosis by shear stress. Laminar shear stress induced human inhibitor of apoptosis protein-2 (HIAP-2) in both in vitro (upper left panel) and in vivo (lower panel. A: sense control. B, C: mRNA expression in bovine and human aortas, respectively. C: HIAP-2 protein expression in human aorta). Inhibition of HIAP-2 activity by transfection of Smac, a caspase inhibitor by binding IAPs (A and B in upper right panel), blocked the shear stress-induced caspase inhibition (C in upper right panel).

三俣 昌子

蛋白/mRNA	伸張度	発現時間	効果
電位依存性K⁺チャンネル活性化	5~10%	24h	細胞増殖促進
angiopoietin-2, tie-20	20%	2 ~ 6h	血管新生し安定化
受容体蛋白,mRNA発現			
myosin軽鎖燐酸化	5~18%	10m	内皮透過性変化
p38活性化	5~18%	10m	内皮透過性変化
Erk-1,2活性化	5~18%	10m	内皮透過性変化
MAPキナーゼ活性化	5~18%	10m	内皮透過性変化
MMP-2 , 1の放出と活性化	17~18%	4 d	肺胞障害
MT1-MMP増加	17~18%	4 d	肺胞障害
EMMPRIN産生増加	17~18%	4 d	肺胞障害
活性酸素産生増加	10%	6 h	単球接着促進
NFĸB活性化	10%	6 h	単球接着促進
c-fos mRNA発現	20%	10 ~ 30m	
Egr-1 mRNA発現	20%	10 ~ 30m	
内皮アポトーシス抑制	6 ~10%	48h	
内皮アポトーシス促進	20%	48h	
cytochrome C放出抑制	6 %	48h	
PI3K活性化	6 %	48h	アポトーシス抑制
Akt燐酸化促進	6 %	30m	アポトーシス抑制
Bad燐酸化促進	6 %	30m	アポトーシス抑制
P38 MAP kinase活性化			
EDRF合成酵素mRNA発現	6 %	8 , 24h	血管拡張
EDRF合成酵素蛋白発現	6 %	9,18h	血管拡張
EndotheIin-1 mRNA発現	~ 20%	2 ~ 24h	血管収縮
PDGF-B mRNA発現	10%	4 h	細胞遊走,増殖
IL-8 mRNA 発現	15.1%	3 , 6h	白血球接着
MCP-1 mRNA 発現	15.1%	3 ~ 24h	単球接着
Adenyl cyclase活性化	10%	1 ~ 60m	
CAMP活性化	10%	10 ~ 20m	
PKA活性化	10%	10 ~ 60m	
NO合成酵素活性化	24%	24h	
Collagen合成抑制	24%	24h	

Table 3 Gene and protein expression in endothelial cells by stretch

して細胞・細胞外基質の接着班構成蛋白[focal adhesion kinase(FAK), paxillin]の燐酸化が亢進し,アクチン繊維や接着班の再配列が生じ,細胞形態の変化が誘導される³⁰)。ちなみに,細胞骨格・接着班装置は機械的刺激の方向,強さを感知するのみでなく,その後の情報伝達,環境適応にも重要な構造になっていると思われる。例えばcytochalasin Bやfolscolinでずり応力によるストレス繊維形成を阻害すると,ずり応力によるPDGF-BmRNA発現(Fig.5)やcollangen合成促進, α-catenin発現が阻害される⁸⁾。細胞内Ca²⁺の増加機構には異なる意見があり,細胞外からのCa²⁺流入は必要ではなく,細胞内小胞体から細胞質へのCa²⁺放出を重要視する報告もある。4.内皮特異的で平滑筋や心房筋細胞にはないK⁺チャンネルが活性化したり,内皮細胞膜の透過性が

亢進して,細胞外から細胞内へK⁺が流入しこれがシグ ナルとなる。5.膜電位依存性Na⁺イオンチャンネルの 変化が細胞内シグナルのスタートになる³¹)。6.細胞膜 の伸展により細胞膜蛋白分子の三次元構造が変化した り,分子が膜の脂質二重層内を移動する。7.活性酸素 を誘導し,この活性酸素が細胞接着装置を変化させ(例 えばFAKを燐酸化し)てシグナルと成るなどが提唱され ている³¹。

このように,内皮の形態と多数の機能は血流の機械 的刺激によっても調節されている。血流の乱れは内皮 の多数の機能を変化させ,その結果病変が発生し易い 微小環境が壁に形成されると考えられる。

上記の如く培養細胞においては多数の刺激に対する 細胞内情報伝達,その終末の細胞形態や機能の変化が 証明されつつある。しかし,血管壁内に存在する内皮 の蛋白や遺伝子の発現は培養実験から引き出された仮 説に一致しない事が多い。内皮がin vivoで,情報を伝 達する道筋,複数の刺激,多岐に広がる情報伝達網, 隣接する細胞(例えば内皮同士,平滑筋,炎症細胞)と の相互関与,成長と加齢をどのように調節しているの かを今後解明する必要がある。

文 献

- 1)吉田洋二:内皮細胞の形態と機能.循環器科,1992, 31:445-454.
- 2 Walski M, Chlopicki S, Celary-Walska R et al: Ultrastrucural alterations of endothelium covering advanced atherosclerotic plaque in human carotid artery visualized by scanning electron microscope. J Physiol Phalmacolo, 2002, 53: 713-723.
- 3 Garlanda C, Dejana E: Heterogeneity of endothelial cells, specific, marker. Arterioscl Thromb Vasc Biol, 1997, 17: 1193-1202.
- 4)Yoji Y, Sue W, Ymane T et al: Structual differences of arterial walls which are either vulnerable or resistant of atherosclerosis. Acta Medica et Biologica, 1990, 38: 1-19.
- 5) 吉田洋二:動脈硬化の局在と血流ずり応力.脈管学, 2001,41:481-487.
- 6 Montenegro MR, Eggen DA: Topography of atherosclerosis in the coronary arteries. Lab Inves, 1968, 18: 126-133.
- 7 Schwartz CJ, Ardlie NG, Carter RF et al: Gross aortic sudanophilia and hemosiderin deposition. A study on infants, children and young adults. Arch Pathol, 1967, 83: 325-332.
- 8) 三俣昌子,山根 徹,秋元滋夫他:内皮細胞の形態と 機能 動脈硬化易発生部位と難発生部位における変 化.脈管学,1996,36:867-872.
- 9) 三俣昌子:血流により内皮に発現される急性反応性蛋白.動脈硬化,1997,25:129-135.
- 10)Traub O, Berk BC: Laminar shear stress, mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol, 1998, 18: 677-685.
- 11)Gimbrone MA Jr, Resnick N, Topper JN: Vascular endothelium, hemodynamics, and atherogeneisis. Vascular endothelium, physiology, pathology, and therapeutic opportunities. Schattauer, Stuttgart, 1997, 1-25.
- 12)Akimoto S, Mitsumata M, Sasaguri T et al: Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21^{sdit/Cip1/Waf1}. Circ

Figure 5 PDGF-B mRNA expression by shear stress. Stress fiber formation by shear stress was inhibited with forskolin. This forskolin also inhibited PDGF-B mRNA induction by shear stress, suggesting that the actin filament rearrangement regulates shear stress-induced mRNA expression.

Res, 2000, 86: 185-190.

- 13 Xin J, Mitsumata M, Yamane T et al: Induction of human inhibitor of apoptosis protein-2 by shear stress in endothelial cells. FEBS Letters, 2002, 529: 286-292.
- 14 DePola N, Davies PF, Pritchard WF et al: Spatial and temporal regulation of gap junction connexin 43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA, 1999, 96: 3154-3159.
- 15)Magid R, Murphy TJ, Galis ZS: Expression of matrix metalloprotease-9 in endothelial cells is differentially regulated by shear stress: Role of c-myc. J Biol Chem, 2003(in press).
- 16) 曽我部正博,河上敬介,早川公英他:内皮細胞の伸展 依存性リモデリング.血管医学,2003,4:21-28.
- 17 Xiao-ming Liu, Ensenat D, Wang H et al: Physiologic cyclic stretch inhibits apoptosis in vascular endothelium. FEBS Letters, 2003, 541: 52-56.
- 18 Dimmeler S, Assmus B, Hermann C et al: Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells. Involvement in suppression of apoptosis. Cir Res, 1998, 83: 334-341.
- 19 Dimmeler S, Hermann C, Galle J et al: Upregulation of superoxid dismutase and nitric oxide synthesi mediated the apoptosis-supressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol, 1999, 19: 656-664.
- 20)Mitsumata M, Fishel RS, Nerem RM et al: Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol 1998, 265 (Heart Circ Physiol

34): H3-H8.

- 21 Sumpio BE, Wei D, Galagher G et al: Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol, 1998, 18: 349-355.
- 22)Ando J, Ohtsuka A, Korenaga R et al: Effect of extracellular ATP level on flow-induced Ca⁺⁺ response in cultured vascular endothelial cells. Biochem Biophys Res Commun, 1991, **179**: 1192-1199.
- 23)Yamada T, Naruse K, Sokabe M: Stretch-induced morphological changes of human endothelial cells depend on the intracellular level of Ca²⁺ rather than cAMP. Life Sci, 2000, 67: 2605-2613.
- 24 Olesen SP, Clapham DE, Davies PF: Heamodynamic shear stress activates a K⁺ current in vascular endothelial vcells. Nature, 1988, **331**: 168-170.
- 25)Fan J, Walsh KB: Mechanical stimulation regulates voltage-gated potassium currents in cardiac microvascular endothelial cells. Cir Res, 1999, 84: 451-457.
- 26)山根 徹,吉田洋二:動脈硬化とずり応力.脳神経外 科速報,1996,6:755-761.

- 27 Sumpio BE, Banes AJ, Link GW et al: Modulation of endothelial cell phenotype by cyclic stretch: inhibition of collagen production. J Surg Res, 1990, 48: 415-420.
- 28)Yamane T, Mitsumata M, Yoshida Y: Laminar shear stress increased the synthesis of basement membrane collagen and inhibited secretion or synthesis of MMP2 in aortic endothelial cells. Xth International Vascular Biology Meeting, Cairns, 1998.
- 29)Haseneen HA, Vaday GG, Zucker S et al: Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol, 2003, 284: L541-547.
- 30 Naruse K, Sai X, Yokoyama N et al: Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Letters, 1998, 441: 111-115.
- 31)Ali MH, Schumacker PT: Endothelial responses to mechanical stress: Where is the mechanosensor? Crit Care Med, 2002, 30: S198-S206.

Endothelial Cells Reacting to the Blood Flow.

Masako Mitsumata

Department of Pathology, Nihon University, School of Medicine

Key words: Endothelial cells, Shear stress, Stretch

Endothelial biomechanical properties play a critical role in the development of important physiological and pathological cardiovascular events including atherosclerosis, aneurysm and vasculitis. The purpose of this study was to describe endothelial functions regulated by the mechanical forces for which the flow of blood is responsible. Endothelium on vessel wall is exposed to three significant physiological forces created by the flow of blood. These are fluid shear stress which change its mean level and direction by the flow pulsatility and special flow pattern such as the flow turbulence at the bifurcations and stenoses; stretching and flexion of cells due to pulsatile flow and elasticity of vascular wall; and cell compression due to transmural pressure. The focus of the study was the morphological changes related to the endothelial cell functions, and protein and gene expressions related to the various impotant cell biological properties including cell growth and apoptosis, caused by the mainly shear stress and mechanical stretch.

(J. Jpn. Coll. Angiol., 2003; 43: 733-743)